Relojes de precision el reloj mas preciso del mundoEl Reloj Optico

El reloj óptico triplica la precisión del tiempo, según un equipo británico de investigadores ha desarrollado un reloj óptico que triplica la precisión de la medida del tiempo conseguida hasta ahora. El nuevo reloj utiliza el ion del estroncio enfriado con láser. Aunque el sistema puede ser mejorado en el futuro, el nuevo reloj óptico ultra preciso provocará una nueva definición del segundo y mejorará las comunicaciones por satélite y la navegación espacial.

Conseguir una medida exacta del tiempo es uno de los objetivos científicos más relevantes. Los avances conseguidos en los últimos 50 años son sorprendentes y continúan realizándose a favor de instrumentos de medición más adecuados a los conocimientos actuales de los tiempos que se utilizan a escalas cada vez más pequeñas.

Hasta 1955, cuando se puso en marcha el primer reloj atómico de cesio, la medida del tiempo se basaba en el movimiento de la Tierra. El principio de este reloj atómico se basa en la absorción de microondas realizada por los átomos de cesio y ha permitido establecer una nueva valoración de la unidad de tiempo fundamental para la escala humana, el segundo.

Un segundo, según la nueva definición establecida gracias al reloj atómico, es la duración de 9.192.631.770 períodos de radiación correspondiente a la transición entre dos niveles hiperfinos del estado fundamental del átomo de cesio 133.

En 2001 se produjo otro avance en la medida del tiempo. Un equipo norteamericano consiguió un prototipo de reloj basado en la frecuencia óptica de un ion de mercurio refrigerado.

1.14 tics por segundo

relojes-precisos-relojes-opticos-comparativa-precision-reloj-atomicoEste nuevo reloj, que opera a unas frecuencias muy superiores a las del reloj atómico, establece más de 1.15 tics por segundo, lo que afina aún más la descripción del tiempo porque los períodos de tiempo considerados para la cuenta de un segundo son más cortos que los conseguidos por el reloj atómico. Un nuevo paso se ha dado ahora en la conquista de las fracciones del tiempo por un equipo National Physical Laboratory (NPL) británico, la misma institución que estableciera en 1955 el reloj atómico.

Han perfeccionado la técnica americana utilizando iones de estroncio, escogido en razón de la disponibilidad de laceres necesarios para su enfriamiento y para la excitación de la transición de medida del tiempo.

Sus resultados han sido publicados en la revista Science y se han conseguido mediante la estabilización de la frecuencia óptica de los iones de estroncio y su posterior medición.

Tal como explica al respecto el NPL en un artículo, el ion de estroncio de estroncio se aísla en primer lugar y se enfría a una temperatura próxima al cero absoluto gracias a un rayo láser. El impacto, la absorción y la reemisión de cada uno de los fotones de este rayo provoca que el ion pierda gradualmente algo de su energía.

Un segundo láser se dirige a continuación hacia el ion enfriado y su frecuencia óptica se traslada a la de la transición temporal del ion de estroncio, alcanzando así una estabilidad que permite una medida exacta.

El reloj óptico Tres veces más preciso

reloj-optico-3-veces-mas-preciso-que-el-reloj-atomicoSegún el equipo británico, este reloj óptico es tres veces más preciso que el conseguido por los científicos norteamericanos. Su incertidumbre relativa es inferior a la del modelo de reloj precedente y es principalmente de naturaleza técnica, algo que puede ser mejorado en el futuro.

Mientras no se consigan estas mejoras técnicas, los relojes de cesio continuarán midiendo el tiempo, pero es evidente que la experiencia con el ion del estroncio es un primer paso para una nueva definición del segundo que mejorará en el futuro los servicios de navegación por satélite y permitirá sincronizar mejor los instrumentos de navegación de las naves espaciales.

La mejora de los sistemas afecta sobre todo a su precisión, ya que mientras más se mejoran los instrumentos de medición del tiempo, más exactos son los datos referidos por los satélites y la localización de las naves espaciales.

El hecho de que la investigación británica haya sido financiada por el ministerio de Comercio y la industria, desvela el interés económico de aumentar la precisión de la medida del tiempo, que condiciona la excelencia de muchos productos asociados a las tecnologías de vanguardia.

Científicos del Observatorio de París han comprobado que relojes muy precisos con un entramado óptico –o en el rango visible– tienen el potencial de cambiar la definición actual del segundo. Hasta ahora son los relojes atómicos de cesio, en el rango de las ondas microondas, los que facilitan la referencia de la unidad de tiempo.

En el Sistema Internacional de Unidades (SI), el segundo es la unidad de tiempo definida por la frecuencia de la luz que emite un átomo de cesio en transición dentro de la banda microondas del espectro.

sistema-internacional-de-unidades-SIAhora un equipo de científicos europeos y australianos, liderados desde el Observatorio de París (Francia), han efectuado mediciones con relojes de estroncio de entramado óptico. Se basan en el mismo principio que los tradicionales y alcanzan su gran precisión, pero operan en el rango óptico o visible.

“Los relojes ópticos están ahora superando a los estándar de cesio y microondas, por lo que se plantea la cuestión de si el segundo del SI debería ser redefinido usando los primeros, una idea que hemos bautizado como ‘segundo óptico”, explica a SINC Jérôme Lodewyck, autor principal de este trabajo que publica Nature Communications.

El investigador explica que hasta ahora se han desarrollado dos tipos de relojes ópticos: de iones –que se capturan mediante una trampa electromágnética–, y de entramado óptico, donde unos 10.000 átomos –de estroncio, en este caso– se atrapan mediante un láser.

el-reloj-mas-preciso-del-mundo-no-es-un-relojEl reloj más preciso del mundo no es un reloj, es un conjunto de maquinas que compara impulsos electromagnéticos “La precisión de los relojes de entramado óptico todavía no alcanza la de los iónicos, pero pronto lo hará y con una mejor estabilidad en las frecuencias”, apunta Lodewyck, quien reconoce que la novedad de este trabajo es “la comparación entre relojes, más que el rendimiento de un reloj individual”. De hecho, otros relojes de estroncio de centros como la Universidad de Tokio, el NIST de Colorado (EEUU) y el PTB alemán alcanzan la misma precisión conseguida en estos experimentos.

Los investigadores han efectuado dos conjuntos de comparaciones. Unas entre dos relojes de entramado óptico para confirmar su potencial, y otras entre un reloj óptico y los mejores de cesio.

Considerando la definición actual de segundo, la precisión de las fuentes microondas de cesio ofrecen una incertidumbre relativa de 2-4 x 10-16. Los nuevos resultados reflejan que los dispositivos ópticos respecto a los tradicionales ya alcanzan el nivel de 3,1 x 10-16, y si se comparan dos relojes ópticos entre sí ese valor se reduce a 1,5 x 10-16.

“Con estas comparaciones de ‘experimentación del segundo óptico’ estamos construyendo un prototipo de arquitectura que medirá el tiempo cuando la definición de segundo se haga en base a relojes ópticos”, señala Lodewyck.

“Este prototipo comprende varios relojes ópticos idénticos capaces de generar una señal estable y precisa, de la que se puede construir una escala ‘media’ de tiempo que, además, se puede conectar con el segundo actual del SI, de tal forma que un cambio en su definición se podría hacer con el menor impacto posible”, concluye el investigador.